
Servers and ExpressJS!
The way that we regularly interact with the internet is through user interfaces, however, a vast
majority of programs using the internet do it entirely through sending pure data back and forth!
Truthfully, HTML is just more data, however, our web browsing software (e.g. Chrome, Safari, Edge,
etc.) understands the language that's sent back, and renders it in a way that's meaningful to us.

TCP/Telnet:

Transmission Control Protocol (TCP) is a protocol that establishes how applications can connect and
speak to each other over the internet. We won't dig too much into this (not a networking class). By
using a tcp client, we can see see exactly how data are sent back and forth via the command line. The
tool we'll use for that is telnet, which uses the TELNET protocol over TCP. For all intents and purposes,
we're just making network calls with our command line.

For linux users, it already exists on your machine in your terminal. If you do not have it on your
machine, you can install it with:

For windows users, you don't need to install it specifically, but you'll need to enable it. To do so,
follow these instructions. For mac users, you'll likely need to install it via a package manager like
homebrew:

Establishing a Connection:

Once you have telnet installed, you can start to establish a connection. You'll need to write:

Let's visit my githubio page with telnet (And use port 80):

apt-get install telnet1

brew install telnet1

telnet HOSTNAME/IP_ADDRESS PORT_NUMBER1

telnet lanematthewj.github.io 801

https://www.technipages.com/windows-10-enable-telnet

Once we open this, notice that nothing happens. That's because we haven't actually said exactly what
we want to do (other than establish a connection). Now we need to provide it with the call we'd like to
make:

What we're doing above is saying we'd like to:

GET - whatever http method we'd like to call.
/ - the path of the resource (think of this as the url path)
HTTP/1.1 - the version of http we want to specify.

Host: lanematthewj.github.io - an IP address can host multiple domains. We need to
specify which host we want!

When you make this request, you won't see anything yet. Hit enter a couple times to signify that
you're finished with your headers / body of your request, then you should see a response
something akin to:

GET / HTTP/1.1

Host: lanematthewj.github.io

1

2

HTTP/1.1 200 OK

Server: GitHub.com

Content-Type: text/html; charset=utf-8

Last-Modified: Wed, 22 Jun 2016 22:35:10 GMT

ETag: "576b129e-1cf5"

Access-Control-Allow-Origin: *

Expires: Mon, 30 Mar 2020 02:26:37 GMT

Cache-Control: max-age=600

X-Proxy-Cache: MISS

X-GitHub-Request-Id: 37BC:4B65:450016:5722BA:5E815683

Accept-Ranges: bytes

Date: Mon, 30 Mar 2020 02:40:09 GMT

Via: 1.1 varnish, 1.1 localhost01.localdomain

Age: 0

X-Served-By: cache-dal21228-DAL

X-Cache: MISS

X-Cache-Hits: 0

X-Timer: S1585536009.370735,VS0,VE41

Vary: Accept-Encoding

X-Fastly-Request-ID: ac77ff48fe8ee78b1b1fabddd2d0f192be0d2dfb

Content-Length: 7413

Connection: keep-alive

<!DOCTYPE html>

<html lang="en">

 <!-- Beautiful Jekyll | MIT license | Copyright Dean Attali 2016 -->

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

In the response, we get a whole ton of information back. Because we're in the command line, we
don't see a beautifully rendered website. We instead see a bunch of HTML and a bunch of response
headers (those lines above the HTML). The HTML we see is the response body (typically what we see
as a rendered website)!

Calling an API

However, since much of the internet is just data transferring back and forth, let's try calling an API
that isn't going to return HTML. This time, though, let's use a route.

Notice above, instead of writing a / for our route to the index, we specified that we'd like to retrieve
something from /v2/quotes . Because this endpoint returns a different quote every time, your
response won't look exactly like this, but will be close enough:

 <head>

 <meta charset="utf-8" />

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1.0,

maximum-scale=1.0">

 boring stuff ...

</html>

27

28

29

30

31

32

33

34

telnet ron-swanson-quotes.herokuapp.com 80

GET /v2/quotes HTTP/1.1

Host: ron-swanson-quotes.herokuapp.com

1

2

3

HTTP/1.1 200 OK

Server: Cowboy

X-Powered-By: Express

Access-Control-Allow-Origin: *

Content-Type: application/json; charset=utf-8

Etag: W/"33-b65a0711"

Date: Mon, 30 Mar 2020 02:14:56 GMT

Via: 1.1 vegur, 1.1 localhost01.localdomain

Content-Length: 51

Age: 2250

Connection: keep-alive

["Never half-ass two things. Whole-ass one thing."]

1

2

3

4

5

6

7

8

9

10

11

12

13

Notice that in this response, we didn't receive any HTML. We only received data (in the form of a
single element string array).

Applications for Not Telnet:

Using telnet is great to understand exactly how data are sent back and forth, however, it's older and
not really that intuitive to deal with. There are newer applications that do the exact same thing, such
as Postman or Insomnia. Both are great. Use whichever you feel more comfortable with, since they
ultimately do mostly the same things!

Making a Call

To make a call similar to how we did with telnet, we can simply just create a new call with ctrl + n
or cmd + n . Each application has a space to enter in your requested URL. You can enter the path
directly in, so you don't need to specify a hostname with an additional path to the desired resource.
Additionally, right next to the url on both clients is a button specifying which request method you
would like to use. Take. a look at how each application does calls ron-swanson-quotes :

Insomnia:

Insomnia has its request data on the left, and its response data on the right. You can view the
response body as a "preview" or even as "raw data".

https://www.postman.com/
https://insomnia.rest/

Postman

Postman's UI is a bit more arcane in that it takes a moment to get used to, however, it's pretty much
the exact same as insomnia, except for that the request is on the top, and the response is below it.

By using these applications for network calls, you can test api's that you're developing and save your
calls instead of typing everything out via telnet.

For the sake of the notes, you'll be seeing insomnia (since it has better screenshot capabilities).

HTTPServer:

Having the tools to test an api is great, but knowing how to code one is why we're here! Let's start
with an incredibly simple server (not using express). First, let's create a new node project (without a
starter kit).

Notice that in our package json, our main entry point is index.js . Let's add that file and write some
code:

mkdir simple-server && cd simple-server

npm init -y

1

2

Now, let's start the server. We can start our server simply by typing node index.js :

NOTE: Before we go any further, here's a quick note: Up to now, we've been using the default project
space from create-react-app . When you made changes in there, the project immediately updated.
Because we're starting from scratch here, you'll need to restart the server every time you make a
change!

When we make a call with insomnia, we can see that we get the response string we had intended (the
insomnia theme changed to white!):

const http = require("http");

const server = http.createServer((req, res) => {

 console.log("The whole request was: " + req)

 const method = req.method;

 const route = req.url;

 res.end(

 "The request was for the method " + method + " and the rout was: " +

route

);

});

const port = 3000;

server.listen(port);

console.log("Now listening on port " + port);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

(base) ➜ simple-server node index.js

Now listening on port 3000

1

2

You can see that we got the string: The request was for the method GET and the route was:
/ back. This was done by using our res object. Think of the res.end as being a way for us to write
material to the response object. Ultimately the response object is a blank canvas for us to fill (we'll
flesh this out a bit more later on).

We can add a specific path to our call too:

Note that the path gets registered as well in req.url , we get the response of: The request was
for the method GET and the route was: /pathToSomewhere .

This response data is fine and great, but we also console.logged some information. Where did that
go? Unlike front end software, since our program is running as a server, and not being sent to be run
on a user's browser, the console logs to the environment where we're running our server (aka the
terminal where we wrote node index.js).

When checking the terminal, though, notice that we're only seeing that our request console log prints
out: The whole request was: [object Object] . This is not entirely helpful. Often times when you
wish to view data that comes in object form, you'll use JSON.stringify . That will crash your server
because req has circular references. You'll wind up with an error like:

Not that you regularly will, want to print out the requests, but it's good to see what's coming in. To do
so, we'll want to import the util package, which has an inspect feature, which we'll want to use to
parse our req :

Now, when we run our code, we're able to see the whole of our request. There is a ton of information
there (around 600+ lines):

TypeError: Converting circular structure to JSON1

const http = require("http");

const util = require("util");

const server = http.createServer((req, res) => {

 const inspectedReq = util.inspect(req)

 console.log(inspectedReq);

 const method = req.method;

 const route = req.url;

 res.end(

 "The request was for the method " + method + " and the route was: " +

route

);

});

const port = 3000;

server.listen(port);

console.log("Now listening on port " + port);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

IncomingMessage {

 _readableState:

 ReadableState {

1

2

3

 objectMode: false,

 highWaterMark: 16384,

 buffer: BufferList { head: null, tail: null, length: 0 },

 length: 0,

 pipes: null,

 pipesCount: 0,

 flowing: null,

 ended: false,

 endEmitted: false,

 reading: false,

 sync: true,

 needReadable: false,

 emittedReadable: false,

 readableListening: false,

 resumeScheduled: false,

 paused: true,

 emitClose: true,

 autoDestroy: false,

 destroyed: false,

 defaultEncoding: 'utf8',

 awaitDrain: 0,

 readingMore: true,

 decoder: null,

 encoding: null },

 readable: true,

 ...

 trailers: {},

 rawTrailers: [],

 aborted: false,

 upgrade: false,

 url: '/',

 method: 'GET',

 statusCode: null,

 statusMessage: null,

 ...

 _consuming: false,

 _dumped: false }

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

There is a ton of data. We don't honestly care about most of it. However, we do are about url and
method , which we can see are in the request (and which we already know are working because we
can see it in the response).

As of now, our server isn't all too powerful. It's just recognizing what's coming in, and printing the
route and the method. That function which is logging our request and returning a string is the
powerhouse of the server! It's ultimately a question how in depth we want to make it! Let's spruce
our function up to be a bit more powerful (and let's format it so it's no longer a parameter to another
function AND remove that gargantuan request log):

Now let's give this a go, first with our index:

const http = require("http");

const serverFunction = (req, res) => {

 const method = req.method;

 const route = req.url;

 if (route === "/" && method === "GET") {

 res.end("Some main page index data");

 } else if (route === "/some-path" && method === "GET") {

 res.end("SOMETHING? WHAT?");

 }

 res.end("Where were you going?");

};

const server = http.createServer(serverFunction);

const port = 3000;

server.listen(port);

console.log("Now listening on port " + port);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Naturally, we got to our indexed path! You may be wondering why we didn't see "Where were you
going?". We don't see the note send from res.end() at line 13 because res.end() is essentially
what kicks off the response and ends the session. Let's try it with our other path some-path :

There we go! We got SOMETHING? WHAT? as a response! And finally, let's see it with a path that
doesn't match:

There we go. We got our default response.

Automating Server Code Updates

Presumably, by now you're very tired of stopping your server, and then restarting it just for a minor
change. Luckily for us, there are tools to do that for us! One of the most popular tools out there is
called nodemon . Nodemon is an automation utility that is often used for reloading a project, but can
be used for any number of automation reasons you have when restarting a project. Let's install it
locally with:

Note what we did above. We used the flag --save-dev . This flag places dependencies as "developer
dependencies". Get used to doing this for tools that you yourself use, but are not necessarily useful
for production code (e.g. things like automation software for restarting a server when changing code,
formatting software, testing software, etc).

There are multiple ways to run nodemon. The documentation suggests installing nodemon globally,
but it's always a good idea to install packages locally so that when someone else goes to run your
project, they don't find themselves missing something (even if it is just a script).

When you want to run a package locally, you can't simply type the name of the package like the
documentation would suggest, otherwise you'll get an error (that is, unless you installed it globally):

npm i --save-dev nodemon1

https://nodemon.io/

What we want to do is use npx :

There we go. Now any time a file linked within our project with a .js, .mjs, or .json extension changes,
nodemon will restart the project.

Our start script is getting a little long, however, so it might just be easier to write our own start script.
We can do this in the package.json. Let's change our package json to have a start script that we can
run instead of typing out npx nodemon index.js :

Now when you run your server, you can just write npm run start , and npx nodemon index.js
will get executed. Anything you want to put into your scripts you can run with npm run
<SCRIPT_NAME> .

When we run our code with npm run start we'll then get an output that looks something like this:

(base) ➜ simple-server nodemon index.js

zsh: command not found: nodemon

1

2

(base) ➜ simple-server npx nodemon index.js

[nodemon] 2.0.2

[nodemon] to restart at any time, enter `rs`

[nodemon] watching dir(s): *.*

[nodemon] watching extensions: js,mjs,json

[nodemon] starting `node index.js`

Now listening on port 3000

1

2

3

4

5

6

7

{

 "name": "simple-server",

 "version": "1.0.0",

 "description": "",

 "main": "index.js",

 "scripts": {

 "start": "npx nodemon index.js",

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "keywords": [],

 "author": "Matt Lane <mjlane@monsanto.com>",

 "license": "ISC",

 "devDependencies": {

 "nodemon": "^2.0.2"

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Now that we've set up our program to autoupdate every time we change a file, let's make some
major changes!

Express

We've set up our base server with http.createServer . Express essentially sits on top of
http.createServer . First, though, we'll need to install express:

Now that we've saved express (note that we didn't save it as a developer dependency, but a regular
dependency), we can import it and use it in our application:

(base) ➜ simple-server npm run start

> simple-server@1.0.0 start

/Users/mjlane/Projects/notes4011/modules/Express/module1Servers/simple-server

> npx nodemon index.js

[nodemon] 2.0.2

[nodemon] to restart at any time, enter `rs`

[nodemon] watching dir(s): *.*

[nodemon] watching extensions: js,mjs,json

[nodemon] starting `node index.js`

Now listening on port 3000

1

2

3

4

5

6

7

8

9

10

11

npm i --save express1

const http = require("http");

const express = require('express')

const app = express()

app.use((req, res) => {

 const method = req.method;

 const route = req.url;

 if (route === "/" && method === "GET") {

 res.send("Some main page index data");

 } else if (route === "/some-path" && method === "GET") {

 res.send("SOMETHING? WHAT?");

 }

 res.end("Where were you going?");

})

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

We can take our callback and place it inside of our app.use , and instead of creating an HTTP server,
we just use app.listen . Additionally, notice that instead of using res.end , we're using res.send .
Express can just as easily use res.end , but by using res.send , you gain some extra benefits from
Express, such as the automatic conversion from javascript objects to JSON:

If we had tried that with plain http.createServer we would've had to use JSON.stringify on the
objects before sending them off.

Ultimately, Express just sits on top of the http module, the following code also works completely fine
(though is a little clunky with the mixture of http and express):

const port = 3000;

app.listen(port)

console.log("Now listening on port " + port);

18

19

20

const http = require("http");

const express = require('express')

const app = express()

app.use((req, res) => {

 const method = req.method;

 const route = req.url;

 if (route === "/" && method === "GET") {

 const someObject = {

 hi: "there",

 whats: "up"

 }

 res.send(someObject);

 } else if (route === "/some-path" && method === "GET") {

 const otherObject = {

 not: "much"

 }

 res.send(otherObject);

 }

 res.end("Where were you going?");

})

const port = 3000;

app.listen(port)

console.log("Now listening on port " + port);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

const http = require("http");

const express = require('express')

const app = express()

app.use((req, res) => {

 const method = req.method;

 const route = req.url;

 if (route === "/" && method === "GET") {

 res.end("Some main page index data");

 } else if (route === "/some-path" && method === "GET") {

 res.end("SOMETHING? WHAT?");

 }

 res.end("Where were you going?");

})

const server = http.createServer(app);

const port = 3000;

server.listen(port);

console.log("Now listening on port " + port);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

	Servers and ExpressJS!
	TCP/Telnet:
	Applications for Not Telnet:
	HTTPServer:
	Automating Server Code Updates
	Express

